end effector 中文意思是什麼

end effector 解釋
末端執行器
  • end : n 1 端,尖,末端,終點。2 邊緣;極點,極限。3 結局,結果。4 目的。5 最後,死。6 【紡織;印染】經...
  1. It was indicated that the ww satisfied the design requirements of the manipulator. the aw expanded with the increasing of the end link and the end - effector length, while the dw and the dexterity of manipulator reduced accordingly. in addition, the length of link 3 and link 5 and the angle range of joint 5 should be chosen reasonably in order to decrease the cavum volume in the workspace

    腕點工作空間滿足機械手設計要求,末桿長度與末端執行器長度對總工作空間與靈活工作空間有較大影響,隨著其長度增大,總工作空間增大,但相應的靈活工作空間減小,機械手靈活性降低;為減小工作空間中空腔區域體積,桿件3 、桿件5的長度與關節5的轉角應合理選擇。
  2. The vision sensor is fixed on the end - effector of the robot. when the robot makes a linear movement along the " v " measurement track, the linear light from the laser electropult on the sensor is projected on the track to shape laser strip with three turning dots and imaged in ccd camera. the relation between the sensor coordinate and the measurement track coordinate can be computed by image processing and pose measuring, which indirectly describes the characteristic of the robot ' s linear trajectory

    該系統利用結構光幾何成像原理和視覺圖像處理技術,將視覺傳感器固定在機器人末端,當機器人沿「 v 」形測量軌道做直線運動時,傳感器上的激光發射裝置發出的線狀光源投射在測量軌道上,形成具有三個拐點的激光條,並在ccd攝像機中成像,通過圖像處理技術和位姿測量技術,得到傳感器坐標系相對于測量軌道坐標系的位姿關系,從而間接描述機器人的直線軌跡特性。
  3. In chapter 2, author points out firstly that the elastic deformation of elastic units of a robot ' s wrist force sensor will be enlarged by the end - effector, the instruments and the work pieces, so the elastic deformation of the sensor will influence the location accuracy or kinetic accuracy of end point of a robot, under the condition of that the robot technology facing the developing of heavy load, light mass and high accuracy. it is discussed respectively that the relationship between the differential kinemics in the sensor ' s coordinate and the location accuracy or kinetic accuracy of the end point. error matrixes of location and kinemics of the end point are presented respectively based on the differential kinemics in the sensor ' s coordinate, and the on - line error compensation methods are introduced subsequently

    第二章首先指出機器人腕力傳感器彈性體的彈性變形經過機器人末端連桿、工具、工件等的放大后,會對機器人末端精確定位和運動產生的影響;然後分別研究了傳感器坐標系內的微分運動與機器人末端工件精確定位、運動的關系;在此基礎上,研究了基於腕力傳感器彈性體微分運動的機器人末端定位、運動誤差的誤差矩陣及其在線誤差補償方法;基於機器人動力學的機器人末端定位、運動誤差的誤差矩陣及其在線誤差補償方法;最後,以puma型機器人為對象,給出了基於腕力傳感器內微分運動的機器人末端定位、運動誤差及其在線補償方法的模擬實例:給出了基於機器人動力學的機器人末端定位、運動誤差及其在線補償方法的模擬實例;模擬結果表明, 1 )基於腕力傳感器的機器人末端定位誤差在腕力傳感器允許的載荷下可達十分之幾毫米級。
  4. Chuck mark - a mark found on either surface of a wafer, caused by either a robotic end effector, a chuck, or a wand

    卡盤痕跡-在表意任片圓晶面發現的由機械手、卡盤或托盤造成的痕跡。
  5. The sensor is mounted on the end effector of the robot, and can be oriented by the robot for data collection

    激光視覺傳感器固定在機器人手臂末端,機器人手臂帶動激光傳感器沿零件表面掃描,獲取零件的三維信息。
  6. Many researchers try many new theory and ways to robot force / position control from different point of view. it is know that there exist complex nonlinear, strong coupling and lots of uncertainties in robotic system, and when the manipulator end - effector contacts with the environment, the different environment stiffness have great affection on the system ’ s performance

    然而,機器人本身是一種高度非線性、強耦合且含有諸多不確定性因素的對象,當機器人的末端執行器與外界環境接觸時,工作環境接觸剛度的不同對控制性能也有較大的影響,機器人的應用范圍因而受到極大制約。
  7. A on - line method for identifying robot load parameters based on robot ' s wrist force sensor is presented aiming at the points that the load parameters must be identified on - line and real - time, and the identification steps are given clearly. 4. experiments of on - line identification inertial parameters of the robot ' s end - effector and load are shown in chapter 4, experiments are done on robot puma562, the work pieces which inertial parameters are already known, are as robot ' s end - effector and load respectively

    第七章以一種十字梁多維力傳感器為例,以bernoulli一eulerbeam為基礎,建立傳感器的動力學模型,定義了傳感器維間禍合的禍合函數,研究傳感器各維的固有頻率與傳感器的幾何參數等的關系,傳感器動態應變與傳感器幾何參數、貼片位置等的關系,傳感器的禍合函數與傳感器幾何參數、貼片位置等的關系,力圖揭示傳感器的動態特性的本質關系,為傳感器的動態設計和傳感器結合機器人對機器人系統的影響的研究提供理論基礎
  8. This system consists of a cartesian robot, robotic end - effector, flask stand assembly, and control system

    該系統包括一直角座標機器人、機器人手端、培養瓶定位裝置總成、以及控制系統。
  9. It ' s a iterative and heuristic technique. every time it change the rotational degree of one joint in the motion chain orderly and makes it to approach the end effector. it ' s factly a numerical solution

    它是一種反復迭代的啟發式方法,它沿著運動鏈依次改變一個關節的旋轉角度,使得endeffector逐步逼近目標,實際上就是一種數值法。
  10. Secondly, the new physical intuition into reduced manipulability is given by means of decomposing reduced manipulability into arm length index and rotation angle index. the center index that expresses the positional relation between fault tolerant workspace and end - effector ' s motion is proposed

    其次,通過將退化可操作度分解為臂長和轉角兩種指標,賦予退化可操作度新的物理解釋,進而提出反映容錯空間和末端軌跡相對位置的中心度指標。
  11. Planning the end - effector ' s motion by utilizing reduced manipulability and center index can guarantee higher dexterity ability for redundant manipulators at failure moment. since in advance the end - effector ' s motion is in the corresponding center of fault tolerant workspace, it is guaranteed that the reduced manipulator can accomplish the unfinished task after the failure and can constantly keep higher dexterity ability during the post - failure operation. thirdly, fault tolerant planning is researched through simulation examples for a planar 3r manipulator and a spatial 4r manipulator

    採用退化可操作度和中心度指標來規劃機械臂末端軌跡,能保證冗餘度機械臂在發生故障時刻具有較高的操作能力;由於預先將末端軌跡置於相應容錯空間的中心,不僅保證發生鎖定故障后能繼續完成後續的操作任務,還能保證退化后的非冗餘度機械臂在完成後續操作任務的過程中,始終保持較高的操作能力。
  12. The micromanipulator must contact the objects to be handled in the manipulation process and the end - effector will be loaded by the exterior forces. the static mechanics of the manipulator has been analyzed on the basis of the work done above, by the way of the screw theory the mechanics jacobia is educed, furthmore, the matrix is the transpose of the kinematics jacobia in such a microscopic world. meanwhile the index of the static stiffness and payload related to the mechanics is studied

    微動機器人在操作過程中,必然要接觸到操作對象,末端執行器要受到力力矩的作用,在前面分析的基礎上,進一步分析其靜力學性能,運用螺旋理論導出反映其靜力特性的力雅克比矩陣,並且可以看到此矩陣與速度雅克比互為轉置。同時還考察了微動機器人的靜剛度、承載能力指標。
  13. In the task space, the attitude space of the robot end - effector is parameterized by rodrigues parameters, and an output feedback controller without the generalized velocity is designed for controlling the position and attitude of the end - effector of a rigid robot

    利用機器人控制系統固有的無源性,在作業空間中,採用rodrigues參數描述末端執行器的姿態,設計了用於機器人末端執行器位姿控制的輸出反饋控制律,消除了控制器中的廣義速度。
  14. Based on the conservation principle of linear and angular momentum, the method derives the equations of the mass and mass center as well as inertia tensor of the new end - effector for the manipulator handling the unknown object

    該方法基於線動量和角動量守恆定律,推出了機械臂負載未知目標的新的末端效應器的質量、質心和轉動慣量的方程組。
  15. The flask stand holds the flask to rotate or to make it incline in order to assist the end - effector taking positions and transplanting

    實驗結果顯示,此一機器人系統能適用於條狀與團狀苗在窄口圓錐形與廣口方形培養瓶內扦?移植。
  16. According to the measured values of the joint angles and the end - effector positions, jacobian matrix is calculated, and errors between the desired and the measured positions of the end - effector are exported to the least square method to determine the compensation for the dimensional parameters of the robot

    通過機器人關節角和末端手爪位置的測量數據,計算雅可比矩陣以及手爪位置理論值和實測值的誤差,採用最小二乘法對機器人的尺寸參數進行補償量的計算。
  17. This paper presents a robot autonomous calibration approach, the kinematics equations are built through the probe fixed in the end - effector contacting the constraint planes in the workspace, the robot internal sensor measurements are recorded for kinematics calibration while the tip - point of the probe is in contact with the constraint planes, the locations of the constraint planes are not necessarily known exactly

    摘要介紹一種機器人自標定方法,通過固定於機器人末端執行器上的探針與工作空間中的約束平面接觸,建立運動學約束方程,利用機器人內部傳感器讀數來辯識機器人運動學參數,約束平面的位置無需準確知道。
  18. The disadvantages of the methods are : robot had to be disintegrated in some methods, that is, these methods cannot perform on - line ; or, obtained the combination value of the robot ' s inertial parameters only by the other methods. and the common problem of the four methods is that the joint ' s characteristics of robot cannot be included. then, author developments a new method for on - line identification robot end - effector ' s inertial parameters based on robot ' s wrist force sensor, theoretic analyses of the method are given in details

    第五章首先明確機器人連桿的慣性參數並不是機器人單個連桿的慣性參數,機器人連桿的慣性參數必須考慮機器人關節的關節特性;針對目前對機器人的關節特性建模還沒有一個切實和行之有效方法的現狀,提出了一種基於機器人基座力傳感器的機器人連桿慣性參數識別方法,該方法不需對機器人的關節特性建模,可以獲得機器人連桿獨立的慣性參數值(而不是慣性參數的組合值) 。
  19. With boundary conditions different from the conventional method, the dynamic equation is developed, which can be used to find input joint angles or input joint torques for the specified trajectory of the end - effector

    通過採用與通常方法不同的邊界條件,推導出了給定機器人末端任務求解機器人輸入關節角和關節力矩的柔性機器人動力學方程。
  20. ( 4 ) the position workspace of the end - effector was simulated by the monto carlo method

    ( 4 )採用蒙特卡洛方法對番茄收獲機械手末端執行器位置空間進行模擬。
分享友人