topology automaton中文意思是什麼

topology automaton解釋
拓撲自動機

  • topology: n. 地學志;【數學】拓撲學;拓撲(結構);【解剖學】局部解剖學。adj. -ical
  • automaton: n. (pl. automatons, -ta )1. 自動物;自動玩具;自動開關;自動裝置。2. 機械式工作的人。

※英文詞彙topology automaton在字典百科英英字典中的解釋。

  1. So the storage structure of finite automaton should the choosed adjacency lists

    所以,有窮自動機的存儲結構最好採用鄰接鏈表來存儲。
  2. Rectification and topology base on stl model is researched, too. the contour information is obtained by using slice technology ; the delaunay triangular meshes are generated by using delaunay triangulation algorithm and conglutinate precision of divided models is insured by using precise orientation technique. in addition, triangle scan is accomplished based on delaunay triangulation algorithm

    採用切片技術獲得了截面輪廓,用delaunay三角網格劃分演算法將截面輪廓網格化,用精確定位技術保證了模型粘接的精度;在delaunay三角網格劃分的基礎上,實現了快速原型的三角形掃描。
  3. Constitutionally - endorsed censorship : the topology of power network and the game principle in institutional reform

    權力關系網的拓撲與制度變遷的博弈
  4. Not only does go - space provide rich examples, but also go - space buildes a bridge between general topology and related mathem atics branches, such as lattics theory, domain theory, graph theory, real number theory, etc. thus it is very important in theory and reality to study go - space

    在go -空間中,不僅給一般拓撲學提供了精彩豐富的例證,而且架設了一般拓撲學和相關數學分支的橋梁,如格論、 domain理論、圖論及實數理論等等。
  5. As we all known, with the founding of euclidean geometry in ancient greece, with the development of analytic geometry and other kinds of geometries, with f. kline " s erlanger program in 1872 and the new developments of geometry in 20th century such as topology and so on, man has developed their understand of geometry. on the other hand, euclid formed geometry as a deductive system by using axiomatic theory for the first time. the content and method of geometry have dramatically changed, but the geometry curriculum has not changed correspondingly until the first strike from kline and perry " s appealing

    縱觀幾何學發展的歷史,可以稱得上波瀾壯闊:一方面,從古希臘時代的歐氏綜合幾何,到近代解析幾何等多種幾何的發展,以及用變換的方法處理幾何的埃爾朗根綱領,到20世紀拓撲學、高維空間理論等幾何學的新發展,這一切都在不斷豐富人們對幾何學的認識;另一方面,從歐幾里得第一次使用公理化方法把幾何學組織成一個邏輯演繹體系,到羅巴切夫斯基非歐幾何的發現,以及希爾伯特形式公理體系的建立,極大地發展了公理化思想方法,不管是幾何學的內容還是方法都發生了質的飛躍。
分享友人