硅太陽電池 的英文怎麼說

中文拼音 [guītàiyángdiànchí]
硅太陽電池 英文
silicon solar cell; silicon photocell
  • : 名詞[化學] silicon (14號元素符號 si)
  • : Ⅰ形容詞1 (極高; 極大) highest; greatest; remotest 2 (極; 最) extreme; most 3 (身分最高或輩分...
  • : Ⅰ名詞1 (太陽; 日光) the sun 2 (山的南面; 水的北面) south of a hill or north of a river 3 (中...
  • : Ⅰ名詞1 (有電荷存在和電荷變化的現象) electricity 2 (電報) telegram; cable Ⅱ動詞1 (觸電) give...
  • : 名詞1 (池塘) pool; pond 2 (旁邊高中間窪的地方) an enclosed space with raised sides 3 (舊指劇...
  • 電池 : [電學] cell; battery; element; electric battery
  1. On the base of these theory calculations, we passivated the front - surface both of different surface doping concentration solar cells by a thin layer of thermally grown sio2. the results show that the in heavy surface doping concentration cell is lower compared to the cell in light surface doping concentration. the majority of improvement in comes from the emitter surface passivation

    接著採用sio2作為鈍化膜,從實驗上比較了在不同表面濃度下單晶硅太陽電池的鈍化效果,結果表明在高表面濃度下其開路壓比低表面濃度下的開路壓低,這開路壓的提高主要來源於降低了前表面復合。
  2. The sc -, mc -, and nc - si solar cells, therefore, reinforce each other in performances, which could be exploited to construct a hybrid pv system with lower cost in view of the well - balanced set of system performance. 2

    2 .最大功率跟蹤技術的研究硅太陽電池的輸出特性隨著日照強度和溫度的不同會發生改變,為了獲得實時的最大輸出功率,在混合型系統中必須包括最大功率跟蹤器。
  3. Although the efficiency of the multicrystal si solar celli s lower than that of monocrystal si, the multicrystal si material is cheaper than monocrystal si, so the multicrystal si module has more potential reducing the cost

    盡管多晶效率比單晶硅太陽電池低約2 ,由於其材料製作成本低於單晶材料,因此多晶組件比單晶組件具有更大的降低成本的潛力。
  4. , l. the texturing of multicrystal si solar cell

    多晶硅太陽電池的絨面技術。
  5. Research evolvement on rtp silicon solar cells

    硅太陽電池的研究進展
  6. The influence of aluminium gettering on the multicrystalline silicon solar cell

    鋁吸雜對多晶硅太陽電池的影響
  7. General rules for measurements of electrical characteristics of amorphous silicon solar cells

    非晶硅太陽電池性能測試的一般規定
  8. Research for rate of usage of solar radiation for a - si solar array in condition of low radiation

    非晶硅太陽電池方陣低光照條件下光能利用率的研究
  9. However, due to the random orientation of the crystal grains, there have n ' t been satisfactory techniques in texturing the surface

    然而多晶硅太陽電池的表面各晶粒的晶向不一致,缺乏有效的絨面技術。
  10. Preparing anti - reflective coating and hydrogen passivation are two key procedures in the process of high efficiency crystalline silicon solar cells

    減反射膜的制備和氫鈍化是制備高效率的晶體硅太陽電池的非常重要工序之一。
  11. It is described that the innovatory technology of selective diffusion and study on surface passivation in theory for crystalline silicon solar cell

    本文的主要內容是介紹晶體硅太陽電池選擇性擴散新工藝和表面鈍化的理論研究。
  12. In the third one we investigated the measure of minority carrier lifetime in silicon solar cells by the photo - induced open - circuit voltage decay ( ocvd )

    該部分研究對工業化生產具有參考價值。第三部分研究了採用開路壓法測量晶體硅太陽電池的少子壽命。
  13. The performances of multicrystalline silicon solar cells were improved after porous silicon heavy phosphorous diffusion passivation and low frequency plasma hydrogen passivation

    通過多孔重磷擴散鈍化及低頻等離子體氫鈍化等多晶硅太陽電池晶界鈍化,改善了性能。
  14. Research on surface and grain boundary passivation mechanism obtained effects of surface recombination on crystalline silicon solar cell performance and the theoretical expression of grain boundary recombination velocity. the limit ratio of short - circuit current increment for anti - reflection coating utilization on solar cells was obtained. the crystalline silicon solar cell spectral response, contact resistance and minority carrier lifetime measurement systems were established

    鈍化機理研究獲得了表面復合對不同表面摻雜濃度晶體硅太陽電池性能的影響、表面和界面復合速度的理論表達式;研究得到了減反射膜對短路流增量比的極限;建立了光譜響應、柵線極接觸阻和少子壽命等測試系統。
  15. It was first discovered that open - circuit voltage decay in multicrystalline silicon solar cells is smaller than that of in monocrystalline silicon solar cells through electron irradiation, which is explained from electron irradiation mechanism and the structure of multicrystalline silicon solar cells and also has not been reported

    通過對晶體硅太陽電池子輻照,首次發現多晶硅太陽電池的開路壓衰減小於單晶硅太陽電池,從輻照機理和多晶硅太陽電池的結構解釋了該現象。本研究未見報道。
  16. Key technologies and its mechanism for improving crystalline silicon solar cells in the scale manufacture have been researched in this thesis. after sioa surface passivation and forming gas treatment utilization in the scale manufacture, the surface recombination and series resistance of solar cells have been reduced while their open - circuit voltage, fill factor and efficiency improved

    本論文研究了提高晶體硅太陽電池效率規模化生產工藝技術的主要環節和相關機理,將sio _ 2表面鈍化、 forminggas處理用於規模化生產,降低了的表面復合速度和串聯阻,提高了開路壓、填充因子和轉換效率。
  17. 3 ) the uniformity and the stability of a - si : h solar cells have been studied and we discussed the influence of i - type thickness and p - type u c - si : h to the uniformity of a - si : h solar cells

    3 )非晶硅太陽電池一致性及穩定性的研究。主要討論了i層厚度及p層微晶對一致性的影響和i層厚度對穩定性的影響。
  18. In this part, the issues and mechanism of light degradation of b - doped p - type cz - si solar cells are introduced firstly, it was clarified that boron and interstitial oxygen are major components of defect center for light degradation of b - doped cz - si solar cells. then in the experiment the b - doped cz - si is chosen as the substrates and annealled at different temperature

    文中首先介紹了摻硼單晶硅太陽電池的光照衰減問題及衰減機制,然後以p型摻硼單晶為實驗樣品,經過不同溫度的熱處理,對影響光衰減的主要因素硼、氧進行了研究。
  19. The pc id has been used in order to analyse the influence of surface recombination on the performance of crystalline silicon solar cell. in different surface concentration, the relation of the surface recombination velocity and the performance ( voc, jsc, g ) of crystalline silicon solar cell is discussed

    採用pc1d就表面復合對性能的影響進行理論計算,探討了晶體硅太陽電池不同表面濃度條件下,表面復合速度與開路壓、短路流以及轉換效率之間的關系。
  20. The conventional pv system in general uses sc - si or mc - si solar cell module as the element for solar energy conversion, for which have comparatively higher conversion efficiency. available in pv market, the typical efficiencies under stc are 14 %, 12 % and 7 % for sc -, mc - and nc - si solar cell modules, respectively

    傳統的光伏發系統通常採用單晶或多晶組件作為能轉換器件,這是因為它們比非晶硅太陽電池具有更高的光轉換效率,在標準測試條件下三種組件的典型光轉換效率分別為: 14 % 、 12 % 、 7 % 。
分享友人