vapour pipe 中文意思是什麼

vapour pipe 解釋
蒸氣管
  • vapour : n 1 汽,蒸氣,水蒸氣;煙霧,霧,靄;【物理學】汽化液體,汽化固體。2 沒有實質的東西;幻想,空想,...
  • pipe : n 1 管,導管,筒。2 煙斗,煙袋;一袋煙。3 〈古語〉笛,管樂器;【航海】(水手長的)哨子(聲);〈p...
  1. Based on this model, the model of greenhouse temperature is set up when the heating system is using. considering the vapour heating as the modeling object, the dynamic formula between vapour temperature and vapour flux of the pipe is set up

    以蒸汽加溫為建模對象,建立管道內蒸汽溫度跟蒸汽流量的動態關系式,組成溫室用蒸汽管道進行加溫時的溫度對象模型。
  2. Hygrothermal performance of building of equipment and industrial installations - calculation of water vapour diffusion - cold pipe insulations systems

    建築物設備和工業設施的濕熱性能.水蒸汽擴散計算方法.冷水管絕緣系統
  3. Thermal insulating products for building equipment and industrial installations - determination of water vapour transmission properties of preformed pipe insulation

    建築設備和工業設施用隔熱製品.預制管絕緣層水蒸氣滲透率的測定
  4. Hygrothermal performance of building equipment and industrial installations - calculation of water vapour diffusion - cold pipe insulation systems

    建築設備和工業設施的溫濕性能.水蒸氣擴散的計算.冷凝管隔熱系統
  5. Hygrothermal performance of building equipment and industrial installations - calculation of water vapour diffusion - cold pipe insulation systems ; german version en 14114 : 2002

    建築設備和工業設施的濕熱性能.水蒸汽擴散計算.製冷
  6. The condensation heat - exchange characteristic of a separate - type heat - pipe was studied on a 1 : 1 model. the heat pipe is heated by electricity, and working fluid is distilled water, and it is cooled by air. the experimental results show that, ( 1 ) when charging liquid ratio is 45 %, condensation heat - exchange coefficient reaches to maxium ; ( 2 ) when there is not non - condensing gas, the coeffcient decreases a little with the increase of vapour pressure, and it decreases by 9. 5 % when the pressure increases from 0. 16mpa to 0. 36mpa ; ( 3 ) when there is non - condensing gas, the coefficient decreases a little, but when the gas is discharged by an exhaust value, it can be improved, when the volume content of the gas is 2. 5 %, it can increased by 22 % ; ( 4 ) the effect of the non - condensing gas on the coefficient decreases with the increase of the pressure, and when the volume content of the gas is 5 % and the pressure increases from 0. 16mpa to 0. 36mpa, the coefficient increases by 6 %. the relative curves are given between condensation heat - exchange coefficient and air flowrate, charging liquid ratio and vapour pressure

    建立了空氣冷卻實驗臺,熱管的加熱方式為電加熱,工質為蒸餾水.在1 1模型上對分離式熱管管內凝結換熱特性、不凝性氣體對凝結換熱的影響及不凝性氣體的擴散規律進行了試驗,得出分離式熱管有一最佳充液率,其值為45 %左右;凝結換熱系數隨著蒸汽壓力的增加略有降低,在實驗的壓力范圍內,降低了9 . 5 % ;不凝性氣體對分離式熱管的凝結換熱僅影響冷凝段下部較小部分,通過排氣閥排出不凝性氣體可有效地改善冷凝段下部的凝結換熱;隨著壓力的增加,不凝性氣體對分離式熱管冷凝段的影響減少.這些結論可用於分離式熱管換熱器的工程設計和控制
  7. Abstract : the condensation heat - exchange characteristic of a separate - type heat - pipe was studied on a 1 : 1 model. the heat pipe is heated by electricity, and working fluid is distilled water, and it is cooled by air. the experimental results show that, ( 1 ) when charging liquid ratio is 45 %, condensation heat - exchange coefficient reaches to maxium ; ( 2 ) when there is not non - condensing gas, the coeffcient decreases a little with the increase of vapour pressure, and it decreases by 9. 5 % when the pressure increases from 0. 16mpa to 0. 36mpa ; ( 3 ) when there is non - condensing gas, the coefficient decreases a little, but when the gas is discharged by an exhaust value, it can be improved, when the volume content of the gas is 2. 5 %, it can increased by 22 % ; ( 4 ) the effect of the non - condensing gas on the coefficient decreases with the increase of the pressure, and when the volume content of the gas is 5 % and the pressure increases from 0. 16mpa to 0. 36mpa, the coefficient increases by 6 %. the relative curves are given between condensation heat - exchange coefficient and air flowrate, charging liquid ratio and vapour pressure

    文摘:建立了空氣冷卻實驗臺,熱管的加熱方式為電加熱,工質為蒸餾水.在1 1模型上對分離式熱管管內凝結換熱特性、不凝性氣體對凝結換熱的影響及不凝性氣體的擴散規律進行了試驗,得出分離式熱管有一最佳充液率,其值為45 %左右;凝結換熱系數隨著蒸汽壓力的增加略有降低,在實驗的壓力范圍內,降低了9 . 5 % ;不凝性氣體對分離式熱管的凝結換熱僅影響冷凝段下部較小部分,通過排氣閥排出不凝性氣體可有效地改善冷凝段下部的凝結換熱;隨著壓力的增加,不凝性氣體對分離式熱管冷凝段的影響減少.這些結論可用於分離式熱管換熱器的工程設計和控制
分享友人