超弱相互作用 的英文怎麼說

中文拼音 [chāoruòxiāngzuòyòng]
超弱相互作用 英文
superweak interaction
  • : Ⅰ動詞1 (越過; 高出) exceed; surpass; overtake 2 (在某個范圍以外; 不受限制) transcend; go beyo...
  • : Ⅰ形容詞1 (氣力小; 勢力差) weak; feeble 2 (年幼) young 3 (差; 不如) inferior 4 (接在分數或...
  • : 相Ⅰ名詞1 (相貌; 外貌) looks; appearance 2 (坐、立等的姿態) bearing; posture 3 [物理學] (相位...
  • : 代詞(相互;彼此) each other; mutual
  • : Ⅰ動詞1 (使用) use; employ; apply 2 (多用於否定: 需要) need 3 (敬辭: 吃; 喝) eat; drink Ⅱ名...
  • 相互 : mutual; reciprocal; each other
  1. In the crystal resorcinarene possessed the cone conformation, in array of head - tail columniation tube. actone molecular sited in the tube between two resorcinarenes. for the first time the one dimention nano - supramolecular - tube with association of neutral moleculer but not metal ion is reported

    本文以間杯芳烴為分子構造塊,分析了它在丙酮、水存在下的單晶結構,發現,在多種下,得到了新穎的納米級一維分子管道。
  2. Abstract : soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad - leaved / korean pine forest ( mountain dark brown forest soil ), dark coniferous forest ( mountain brown coniferous forest soil ) and erman ' s birch forest ( mountain soddy forest soil ) in changbai mountain in september 2001. the soil water content was adjusted to five different levels ( 9, 21, 30, 37 and 43 ) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35 for 24 h the results indicated that in broad - leaved / korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35. soil respiration rate increased with increase of soil water content within the limits of 21 to 37, while it decreased with soil water content when water content was over the range. the result suggested the interactive effects of temperature and water content on soil respiration. there were significant differences in soil respiration among the various forest types. the soil respiration rate was highest in broad - leaved / korean pine forest, middle in erman ' s birch forest and the lowest in dark coniferous forest. the optimal soil temperature and soil water content for soil respiration was 35 and 37 in broad - leaved / korean pine forest, 25 and 21 in dark coniferous forest, and 35 and 37 in erman ' s birch forest. because the forests of broad - leaved / korean pine, dark coniferous and erman ' s birch are distributed at different altitudes, the soil temperature had 4 - 5 variation in different forest types during the same period. thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil

    文摘:為了研究土壤溫度和土壤含水量對闊葉紅松林(山地暗棕壤) 、雲冷杉暗針葉林(山地棕針葉林土壤)和岳樺林(生草森林土)的土壤呼吸的影響,於2001年9月在長白山進行了土壤實驗.利增加土壤樣柱的含水量,將土壤含水量分為9 , 、 21 、 30 、 37和43 5個等級,土壤樣品分別在0 、 5 、 15 、 25和35的溫度下保持24小時.闊葉紅松林土壤在0 ( 35范圍內,土壤呼吸速率與溫度呈正關.在一定的含水量范圍內( 21 ( 37 ) ,土壤呼吸隨含水量的增加而升高,當含水量出該范圍,土壤呼吸速率則隨含水量的變化而降低.土壤溫度和水分對土壤呼吸存在明顯的交.不同森林類型土壤呼吸存在顯著差異,大小順序為闊葉紅松林>岳樺林>雲冷杉暗針葉林.紅松闊葉林土壤呼吸的最佳條件是土壤溫度35 ,含水量37 ;雲冷杉暗針葉林下的山地棕色針葉土壤呼吸的最佳條件是25 , 21 ;岳樺林土壤呼吸的最佳條件是35 ,含水量37 .但是,由於長白山闊葉紅松林,雲冷杉林和岳樺林處在不同的海拔帶上,同期不同森林類型土壤溫度各不同,差4 ~ 5 ,所以野外所測的同期的山地棕色針葉林土呼吸速率應低於暗棕色森林土呼吸速率,山地生草森林土呼吸速率應高於山地棕色針葉林土的呼吸速率.圖2表1參25
  3. Soil incubation experiments were conducted in lab to delineate the effect of soil temperature and soil water content on soil respirations in broad - leaved / korean pine forest ( mountain dark brown forest soil ), dark coniferous forest ( mountain brown coniferous forest soil ) and ermans birch forest ( mountain soddy forest soil ) in changbai mountain in september 2001. the soil water content was adjusted to five different levels ( 9, 21, 30, 37 and 43 ) by adding certain amount of water into the soil cylinders, and the soil sample was incubated at 0, 5, 15, 25 and 35 for 24 h the results indicated that in broad - leaved / korean pine forest the soil respiration rate was positively correlated to soil temperature from 0 to 35. soil respiration rate increased with increase of soil water content within the limits of 21 to 37, while it decreased with soil water content when water content was over the range. the result suggested the interactive effects of temperature and water content on soil respiration. there were significant differences in soil respiration among the various forest types. the soil respiration rate was highest in broad - leaved / korean pine forest, middle in ermans birch forest and the lowest in dark coniferous forest. the optimal soil temperature and soil water content for soil respiration was 35 and 37 in broad - leaved / korean pine forest, 25 and 21 in dark coniferous forest, and 35 and 37 in ermans birch forest. because the forests of broad - leaved / korean pine, dark coniferous and ermans birch are distributed at different altitudes, the soil temperature had 4 - 5 variation in different forest types during the same period. thus, the soil respiration rates measured in brown pine mountain soil were lower than those in dark brown forest and those measured in mountain grass forest soil were higher than those in brown pine mountain soil

    為了研究土壤溫度和土壤含水量對闊葉紅松林(山地暗棕壤) 、雲冷杉暗針葉林(山地棕針葉林土壤)和岳樺林(生草森林土)的土壤呼吸的影響,於2001年9月在長白山進行了土壤實驗.利增加土壤樣柱的含水量,將土壤含水量分為9 , 、 21 、 30 、 37和43 5個等級,土壤樣品分別在0 、 5 、 15 、 25和35的溫度下保持24小時.闊葉紅松林土壤在0 ( 35范圍內,土壤呼吸速率與溫度呈正關.在一定的含水量范圍內( 21 ( 37 ) ,土壤呼吸隨含水量的增加而升高,當含水量出該范圍,土壤呼吸速率則隨含水量的變化而降低.土壤溫度和水分對土壤呼吸存在明顯的交.不同森林類型土壤呼吸存在顯著差異,大小順序為闊葉紅松林>岳樺林>雲冷杉暗針葉林.紅松闊葉林土壤呼吸的最佳條件是土壤溫度35 ,含水量37 ;雲冷杉暗針葉林下的山地棕色針葉土壤呼吸的最佳條件是25 , 21 ;岳樺林土壤呼吸的最佳條件是35 ,含水量37 .但是,由於長白山闊葉紅松林,雲冷杉林和岳樺林處在不同的海拔帶上,同期不同森林類型土壤溫度各不同,差4 ~ 5 ,所以野外所測的同期的山地棕色針葉林土呼吸速率應低於暗棕色森林土呼吸速率,山地生草森林土呼吸速率應高於山地棕色針葉林土的呼吸速率.圖2表1參25
  4. At least, in weak interaction, neutrinos may be superluminal particles

    至少在中,中微子可能是光速粒子。
  5. Due to the importance of the interferometer in implementing the logic gate operations, the coherent time of the system used as quantum bit must be as long as that to carry out the logic gate operations at least. the trapped ions meet the above demands, so it is the best candidate

    由於離子阱中冷離子是處在一個近乎與世隔絕的空間中,它與外界的,所以由環境引起的消干近似可以忽略,因此囚禁離子阱中冷二能級離子成為實施量子邏輯門操的首選。
分享友人