退焊接 的英文怎麼說

中文拼音 [tuìhànjiē]
退焊接 英文
back stewelding
  • 退 : 動詞1 (向後移動) retreat; draw back; move back 2 (使向後移動) cause to move back; remove; wit...
  • : 動詞(用熔化的金屬修補金屬器物或使金屬工件連接起來) weld; solder
  • : Ⅰ動詞1 (靠近;接觸) come into contact with; come close to 2 (連接; 使連接) connect; join; put ...
  • 焊接 : weld; welding; soldering; seal; sealing; sealing-in; shutting together
  1. Standard specification for welded, unannealed austenitic stainless steel tubular products

    退火的奧氏體不銹鋼管形製品標準規范
  2. When flux appears liquid and transparent on both tube and valve, start sweeping flame back and forth along axis of joint to maintain heat on parts to be joined, especially toward base of valve socket

    劑變成液態並且在管道和閥門上呈現半透明狀態時,開始將火焰沿著連部件的軸線進行進退烘烤,以保持連部件、特別是閥門套筒底座部位的熱度。
  3. In this thesis, four types of steel beam - rectangular cfst column connections, including normal welded flange plate ( wfp ) connection, bolted flange plate ( bfp ) connection, stiffened end plate ( sep ) connection and double split - tee plate ( dst ) connection, were designed based on the configuration of steel frame connection. total 8 models, 2 models of each kind of connections were tested under low - reversed cyclic loading at the end of cfst columns. the relationships between force and displacement at the end of columns, the relationships between the moment and rotation of the joints, degradations of strength and stiffness, ductility, failure mechanism and failure characteristics of these four connections under different axial - compression ratios were presented

    本文借鑒鋼框架節點構造,設計了四種類型矩形鋼管混凝土柱與鋼梁連節點,包括常規栓( wfp )節點、翼緣全螺栓連( bfp )節點、雙t板連( dst )節點以及加勁端板連( sep )節點,進行了四類節點8個模型試件在柱端低周反復荷載作用下的抗震性能試驗研究,比較了不同軸壓比下節點的滯回性能、強度與剛度退化、延性、破壞機理與破壞特徵,主要結論有: 1 、節點的位移滯回曲線與轉角滯回曲線為塊型分佈,沒有或略有捏攏現象,耗能能力強; 2 、軸壓比對節點滯回曲線有顯著影響,全部節點都有顯著的剛度退化; 3 、位移與轉角骨架曲線在峰值荷載後有較長的水平或下降段,具有良好的延性性能; 4 、從整體抗震性能上看,翼緣全螺栓連節點、雙t板連與加勁端板連節點都優于常規栓節點,可在實際工程中加以推廣。
  4. The results of explosive welding specimen show that the interfaces formed by explosive welding present disciplinary and consecutive shape. there are no distinctiness diffused layers on the interfaces. after elevated temperature annealing, the interdiffused layers formed in interface of nb - 1zr and stainless steel

    研究結果表明:對于nb - 1zr合金和不銹鋼爆炸形成的結合區呈現規律的和連續的波浪形狀,無明顯擴散層;經高溫退火后的結合層形成一定厚度的由nb - 1zr和不銹鋼合金元素互擴散形成的擴散層。
  5. The result shows that the new control system has convenient parameter modification, perfect controlling flexibility, rapid dynamic response speed, stable welding procedure ; the das of welding parameters has strong ability of anti - disturbance and the data is reliable. the control effect and practicability of the diagnosis system judging the welding quality are both good by using the characteristic values of welding process such as the percentage of the flashing time. gray - spots flaw in flash welding joints of rail is the least when the pole moves to and fro at the same velocity and the speed is slow

    結果表明:新型控制系統參數設置修改方便,控制柔性好,動態響應速度快,過程穩定;參數採集系統抗干擾能力強、數據可靠;以閃光時間百分比等過程特徵量為判據診斷質量效果好,實用性強;當動立柱的前進、後退速度相同且為低速時,鋼軌頭中灰斑缺陷數量最少。
  6. Aerospace series - elements of electrical and optical connection - test methods - part 425 : unwrapping, solderless wrapped connections

    航空航天系列.電氣及光學連元件.試驗方法.第425部分:無釬纏繞頭的退繞能力
  7. The maximal power outputs of 37. 0 mw / cm2 and 30. 0 mw / cm2 for the p - and n - type laminated materials respectively at the temperature difference 490 have been experimentally obtained, which are about 2. 5 and 3. 0 times those of - fesi2. chemical analyses show that the interface failure between the bridge alloy and the semiconductor bi2te3 results mainly from the eutectic mixtures with low melting point and brittle compounds formed during welding and long time annealing at 190. it is found that the electrical properties of a laminated structure are mainly controlled by the wettability of the bridge alloy on the semiconductor surface

    發現: 1 )疊層材料具有明顯優于均質材料的熱電性能,在490溫差下, p -型和n -型疊層材料的最大輸出功率分別達到37 . 0和30 . 0 ( mw / cm ~ 2 ) ,是同類型均質- fesi _ 2的2 . 5和3倍; 2 )在過程和190長時間退火處理過程中,過渡層合金和基體半導體(特別是bi _ 2te _ 3 )之間存在明顯的元素相互擴散,從而在過渡層中形成一些低熔點共晶體和脆性化合物,這是導致疊層材料破壞的主要原因; 3 )過渡層合金與半導體基體之間的潤濕性是影響界面層電性能的主要因素。
分享友人